Anomalies: Signposts of Progress

By Jeff Dunne

We all have some concept of what is *anomalous*—perhaps when an old friend suddenly comes to mind mere moments before they call, maybe when the lightbulb blows just as your fury reaches its peak. Possibly it is something as universal as having a feeling of being watched, only to turn and find someone staring at you. The more we consider such events, such 'coincidences', the more we recognize that these experiences are not anomalous in the sense of being uncommon. To the contrary, only a small minority of people have *not* had such experiences. A far more fitting categorization is to describe something as 'anomalous' when it represents an experience that refutes established expectations, and even within the confines of this paragraph we see the irony of that definition: phenomena experienced by nearly everyone have somehow found their way into the realm of the unexpected. This carries deep implications on the nature of how our perspectives and expectations can be manipulated, but herein we will focus on the *nature* of those unexpected, often inexplicable, 'anomalous' events, not the causes for their categorization.

Within the collection of a person's day-to-day experiences there are countless 'anomalies'. Many do not motivate us to rethink our worldview, even though some of them perhaps should. An anomalous act of unexpected kindness, for example, is often dismissed as 'just one of those things', yet consider what it implies about the presence of goodness within the human spirit (something many find increasingly difficult to recognize in our social media-driven culture). And if that act of kindness turns your mood around, what manner of rippled aftereffects might it be having on every other interaction comprising your day? There is scientific evidence suggesting that such Butterfly Effect occurrences may be far from random, in which case that 'dismissible' act of kindness could actually be the leading edge of a profoundly paranormal life experience.

In many ways science is the culprit behind such careful, even purposeful, categorization of selected phenomena as anomalous, suggesting that such experience be dismissed as meaningless coincidence, hallucination, or even deliberate fabrications¹. Mainstream science, after all, promotes a specific worldview, fervently insisting that anything not in alignment with that materialist model must be false. The absurdity of this fear- or ego-driven hubris can easily be illustrated in two ways.

First, attempting to argue that a thing is not valid because it flies in the face of established scientific models reveals a flawed understanding by the arguer of how science works. The scientific method—for science is, first and foremost, a method—is founded on the principle of 'failure to disprove'. The scientist hypothesizes, then attempts to disprove the hypothesis. If disproven, we have discovered what *isn't*. If not, that is *not* equivalent to having proven the

¹ This is not to imply that people never fabricate stories about anomalous experiences. Of course they do; at any and every moment there are countless people fabricating stories about essentially everything. We would not, however, observe one person stealing money from clients by falsely claiming that their funds are invested in legitimate ventures, and then turn around and suggest this as proof that every financial advisor is a charlatan.

hypothesis as true. Only after careful, controlled, and repeated testing of every possible configuration of reality would it be possible to say something has been 'proven'. It is an understatement to say that such an approach is prohibitively time-consuming and expensive.

A second and simpler argument is this: in the history of all scientific models/worldviews preceding the current one, literally 100% of them have been found to be wrong or incomplete. Based on such precedent, the probability of the current model being correct and complete is essentially zero. To dismiss experience as impossible on the basis that it does not fit the current model is akin to asserting that any cuisine a person has not previously eaten cannot possibly be food.

However, before clambering for our torches and pitchforks to raze the halls of science for denying the validity of our anomalous experiences, let us note that the scientific method is a tool that can also be used to validate and explore those experiences. Perhaps the strongest example of this was the work of the Princeton Engineering Anomalies Research (PEAR) program under the direction of Dr. Robert Jahn and Dr. Brenda Dunne. This program, which ran from 1979 through 2007 in the Engineering Department at Princeton University, took a systematic, data-driven approach to exploring the question of whether the 'average' person can, by intention alone, affect the behavior of physical systems (psychokinesis, or PK) and/or access information through non-traditional mechanisms (telepathy, or TP).

While PEAR was far from the first program to study these phenomena, it took a unique approach that set it apart from previous investigations. Rather than employing 'gifted' subjects or looking at spectacular events, PEAR focused on studying the small but consistent effects that ordinary people have on systems that should not, according to the prevailing materialistic world model, have responded to an operator's intention. Their experiments produced massive quantities of data across a wide range of phenomena—thermal, optical, mechanical, hydrodynamic, acoustic, and quantum mechanical—that consistently showed the same result with undeniable statistical significance: ordinary people do possess the ability to influence physical reality through their intentions.

This research laid an important cornerstone in the foundation of our quest to understand anomalies: to finally move beyond the endlessly questioning whether such events are real or simply meaningless flukes or coincidence. With a body of evidence that would only happen by chance once every few lifespans of the universe, the hypothesis that we are automatons in a materialist reality whose intentions have no impact on the external world has been refuted. It is reasonable² to accept that we are not deluding ourselves, and to proceed to more exciting questions.

So *how* do we proceed? Let us recall from above the quintessential definition of an anomaly: something that is unexpected based on our world model. From this definition we immediately

² And here we explicitly mean it is reasonable within the mindset and processes of science, for it has long since been reasonable from philosophical and experiential perspectives.

see the true value of anomalies as signposts pointing us to the shortcomings of our current understanding. Anomalies are, in every sense, the greatest gift that science can receive, and the basis for nearly every important scientific advancement throughout history. If you, the reader, are a mainstream scientist with an inclination to dismiss experiences/evidence as impossible when they refute the current scientific consensus, do not feel too bad. From losing friends for offering critique in response to one's ideas or assumptions, all the way to burning heretics at the stake for suggesting we are not the center of the universe, history overflows with examples of people not recognizing the uncomfortable as gifts until much later.

It is certainly not practical to explore the implications of every known anomaly in the confines of this article, but there is value in exploring some examples to illustrate the point. Consider these common 'anomalous' phenomena:

- 1. We receive information, i.e. perceive, in a fashion that does not conform to the traditional five senses of sight, sound, touch, smell, and taste.
- 2. We receiving information corresponding to events and circumstances in the past (e.g. past lives) or future (i.e. premonitions).
- 3. Experiences during non-ordinary states of consciousness...
 - a. ...often can only be organized in temporal sequence after returning to a 'normal' state of awareness, and...
 - b. ...do not correspond to the spatial location of the perceiver's physical form.
- 4. We can affect 'objective' systems with our intentions³.

These examples imply some interesting misconceptions within the prevailing scientific dogma, namely:

- That we are physical beings with cognitive experiences emergent from biological matter;
- That time and space are immutable properties of an objective universe; and
- That we are isolated individual entities within that objective universe.

With reason to suspect that these assumptions may be invalid⁴, the next logical step from a scientific perspective is to form a hypothesis and assess evidence (either from prior recorded experiences or obtained through newly-designed experimentation) that can refute that hypothesis. In the above three examples, this has been done extensively over the years.

Are we, first and foremost, biological machines whose cognitive experiences are the result of neural activity? If that were the case, it would be impossible for a person to have perceptions, thoughts, and other cognitive experience while their brain is medically dead. But it happens. People have had verified perceptions beyond the bounds of their spatial and temporal proximity, which a) suggests that we certainly are not bound to a physical body in the way that materialist science claims, and b) implies that time and space are not what they seem. Perhaps

³ Or for that matter influence other people through our state of being, such as when one person's mood affects others even when they are not consciously aware of that person's mood.

⁴ Although within the spirit of science one does not need an evidence-based reason, or in fact any reason at all, to question the prevailing understanding. Idle curiosity alone is sufficient to warrant exploring an idea.

even more compelling in refuting the idea that time and space are immutable properties of an objective universe is that even mainstream science is recognizing that they are not. Within the framework of quantum mechanics, time and space (as well as other properties) are the consequence of *observation*, i.e. emergent quantities resulting from asking a question. In other words, it is the act of organizing our experiences within a cognitive framework of spacetime that gives rise to the experience of spacetime.

And what about the assumption that we are isolated, standalone entities? The reasonableness of this belief falls apart under numerous perspectives. Consider the comparatively simple life form of bacteria. It is alive; it has identity. What about a colony of bacteria? Each cell retains its identity, but doesn't the colony have its own unique identity as well? Each individual cell of bacteria, while retaining that unique identity, is simultaneously part of the greater ecosystem that is the colony. If you are inclined to argue that the bacterial colony is *not* a thing unto itself, possessing a unique identity greater than the sum of the individual parts, then we must ponder what manner of being is reading this article. According to research from the National Institute of Health, for every specifically-human cell in our bodies, we have ten more that are something else (bacteria, microbes, fungi, etc.). Humans are very much a collective of diverse lifeforms masquerading as a homogeneous entity, and yet most people consider themselves to have concrete identity.

Looking outward, we find more evidence that we are not isolated, standalone entities. For example, most people have experienced emotions that another is feeling. While that can be explained by a more complex model in which we make observations of others and project ourselves into their situations, such is just that: a more complicated explanation. Far simpler is to consider that what affects one person does not affect just *one* person, but rather impacts a greater organism comprising many people. Societal/cultural trauma, for example, is well-documented, and is simple to understand when one considers a group of people to have a common identity with a correspondingly greater consciousness. It is considerably harder to explain under the assumption that people are not interconnected.

These examples are only the barest tip of the iceberg. Even a simple bulleted list of evidence—shared dreams, accessing historical memories, energy healing (and even the placebo effect, for which there are compelling arguments to consider as a manifestation energy-based self-healing), PK and TP, syntropic effects, etc.—would fill volumes, but such an accounting is not the goal of this essay. Rather, we simply recognize that when considering the quintessential nature of anomalies as indicators of an incomplete worldview, we discover that we have been ignoring a vast and compelling archive of evidence documenting where our current model of reality falls short.

So what?

If there is a most important takeaway from these paragraphs, it is undoubtedly this: we, as a species, would be well-rewarded to change our attitude towards anomalies. Instead of considering them unreasonable topics for discussion, enigmas to be pushed into the darkness

(or more accurately, reasons for pushing our heads into the sands of denial), we should be eager for, and exhilarated by, their appearance. Without the presence of anomalies, scientific progress would be a slow, uninformed, and random crawl. And lastly, presented without elaboration here but with the promise of a future article expanding on the concept of syntropy in its relationship to entropy, the flavor of anomalies that we call 'synchronicities' could very well be providing us with invaluable hints about what purposes are calling us into our future.

About the Author

Dr. Jeffrey Dunne is the President and Chairman of the Board of the International Consciousness Research Laboratories (ICRL), a charitable research organization established in the late 1990's to build upon the foundation laid through the research carried out at the Princeton Engineering Anomalies Research (PEAR) Laboratory. In addition to his role with ICRL, Jeff is a systems engineer and researcher in the fields of data science and artificial intelligence at the Johns Hopkins University, where he augments his focus on the nature of consciousness with skills in a wide range

of technical disciplines, from signal processing and acoustics to data fusion and linguistics. Jeff is also an award-winning author and playwright. With his 2023 novel, *Nexus*, he weaves together the scientific and the spiritual to introduce the principle of syntropy to readers of any age and background, showcasing the importance of finding balance at every scale—personal, societal, and global. Dr. Dunne holds a B.S. in Mechanical Engineering, as well as a M.S. and Ph.D. in Experimental Physics.