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ABSTRACT: Most of the issues raised by Hansen, Utts, and Markwick, including
shared descriptor preferences, environmental or temporal cues, and agent encod-
ing, have long been acknowledged, adequately addressed in our experinental de-
signs and analytical techniques, and fully documented in our literature. The re-
mainder of their concerns, including randomization of targets and reference score
distributions, trial-by-trial feedback, stacking, and cheating are either misapplied,
fundamentally incorrect, or have trivial impact. Additional calculations and deri-
vations, supplementing those previously published, further demonstrate the insen-
sitivity of our matrix scoring methods to target and descriptor dependence from
any source. In sum, it is readily shown, both empirically and theoretically, that
none of the stated complaints compromises the PEAR experimental protocols or
analytical methods, which remain rigorous and effective methodologies for remote
perception research. Thus, the published results and conclusions of our entire 336-
trial database are fully reaffirmed.

Once the polemical generalizations and ad hominem assaults
that disfigure their presentation are stripped awav, the mélange of
issues raised by Hansen. Utts. and Markwick (hereafter denoted
HUM) seem to fall nto three categories: (a) those that are indeed
pertinent but have been previously recognized. thoroughly resolved,
and fully presented in several publications on this topic; (b) those
that are valid in general principle but are misapplied, misunder-
stood, or ineffective in this context; and (¢) those that are funda-
mentally incorrect. In this rebuttal, we shall attempt to respond only
to their various technical challenges to our analyses and protocols,
following, insofar as possible, their order and titles.

Methodological Problems

Randomization

The Randomization section of the HUM article begins with two
categorically incorrect assertions: “Randomness is the foundation
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upon which all statistical inference is built. Without any source of
randomness, it is impossible to assign probabilities to events.”

Classical statistics and information theory are perfectly well
equipped and are commonly applied to assess the degree of differ-
ence between two empirical distributions, neither of which qualifies
as random (Box, Hunter, & Hunter, 1978; Snedecor & Cochran,
1980; Whalen, 1971). The basic issue of any remote perception re-
search is whether data acquired under a given protocol differ from
those acquired under another, or from some necessarily arbitrary
control standard, none of which are likely to be fully random in the
strict sense of the term. In our studies, for example, the primary
question is whether given bodies of remote perception data more
accurately represent specific characteristics of their proper targets
than those of the other, irrelevant (mismatched) targets in that pool.
Secondary questions include whether matched-target data acquired
in a volitional protocol differ from those acquired in an instructed
protocol, whether some percipient-agent pairs perform better than
others, whether certain target characteristics are more perceptible
than others, etc. The five analytical methods applied to these com-
parisons are quite competent to assess the statistical likelihood of
these empirical differences without reference to any absolutely ran-
dom distributions (Dunne, Jahn, & Nelson, 1983; Jahn et al., 1982;
Jahn, Dunne, & Jahn, 1980).

HUM then proceed from this generic error to express assorted
concerns about “subject’s preferences and biases,” which subse-
quently reappear in various forms throughout the balance of their
paper. More specifically, they dispute the target selection process in
the volitional trials and the coding of the descriptor lists. The for-
mer is indeed a legitimate a priori concern—so much so that a pri-
mary design consideration for establishment of the volitional pro-
tocol provided that its results be directly compared with those of the
more traditional instructed protocol wherein the target pool is rig-
orously randomized. As noted below, no systematic scoring benefit
seems to accrue from the former, more casual protocol. Specifically,
the composite z score for 125 instructed trials is 5.771, with an as-
sociated p value of 4 X 10 °, whereas the 211 volitional trials have
a z score of 3.549 and a p value of 2 X 104

HUM’s passing complaint about the randomization of the in-
structed target pool is similarly spurious; our randomization proce-
dure has been adequately described or referenced in every publi-
cation or talk in which instructed protocol data have been presented
(Bisaha & Dunne, 1979; Dunne & Bisaha, 1979; Dunne, Dobyns, &
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Intner, 1989; Dunne, Jahn, & Nelson, 1983). Simply to repeat, these
target pools are identified by an individual otherwise uninvolved in
the program. Target locations are stored in randomized, numbered,
sealed envelopes in safe-files of a second disinterested individual.
Target envelope numbers are selected just prior to trial initiation by
a suitable random process, usually our well-calibrated random event
generator. The agent then is provided that envelope by the archi-
vist, with no knowledge of its content by any member of the re-
search group or percipient. The agent never opens the envelope un-
til he has left the building and has no further contact with any
participant until the trial is completed and the response forms col-
lected.

Agent Coding

The HUM concern that shared descriptor preferences between
percipients and agents may artificially inflate their matched-target
scores is legitimate in principle but has previously been raised by
several commentators, including ourselves, and has been the subject
of an extensive analytical program that has been detailed in a com-
prehensive technical report (Dunne, Dobyns, & Intner, 1989) and in
a number of personal communications to HUM themselves (Y. H.
Dobyns, letter to Betty Markwick, Aug. 24, 1990; B. J. Dunne, let-
ters to Betty Markwick, Nov. 9, 1989, April 2, 1990; R. D. Nelson,
letters to G. Hansen, Feb. 21, 1986, Feb. 5, 1988). It turns out that
most of this potential vulnerability is obviated by the basic technique
of comparing matched-target scores with the complete mismatched
(off-diagonal) score distributions. Nonetheless, one may still worry,
as HUM suggest, that internal variations in the mismatched matrices
may feed through as secondary sources of score inflation. Specifi-
cally for this reason, extensive analytical, ANOVA, and Monte Carlo
calculations were performed some time ago to assess the possible
magnitude of such artifacts (Dunne, Dobyns, & Intner, 1989). As
one example, these analytical judging procedures were applied to a
number of subsets of the database, each of which comprised only
data from given percipient-agent pairs, wherein any potential
shared descriptor preferences would operate equivalently in the
mismatched as well as matched scores, and would thereby provide
absolutely no advantage. In other studies, potential advantages from
knowledge of season, time of day, geographical locale, and other
potential cues were similarly assessed. Applied to our entire data-
base, such studies found that some of these factors fed through to
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trivial advantage, others to disadvantage, but none to any scale that
individually or collectively altered the bottom-line conclusions. (See
Dunne, Dobyns, & Intner, 1983, Section D, particularly Table D and
Figure 10.) An extension of these calculations since performed to
strengthen these results and to respond to other privately commu-
nicated HUM complaints is included in the following Appendix.

The HUM allusions to photographs and external judging fur-
ther demonstrate their lack of comprehension of the basic purpose
and strategy of the PEAR remote perception program. Agent en-
coding of targets was introduced deliberately and specifically to as-
sess the role of the percipient-agent bond in the anomalous infor-
mation transfer process, and to eliminate the highly variable
subjective, and possible psychical, overlay of third-party judging on
such experiments. Thus, we purposefully do not use analysts or
photographs in the evaluation, although photographs taken by the
agent at the scene may be used for secondary documentation. We
have, however, assessed the possible vagaries of agent encoding by
having a substantial subgroup of targets used in actual trials en-
coded by a third party not otherwise involved. Scores computed us-
ing these secondary encodings were found to be highly correlated
with those using the agent encodings, and the mean scores were sta-
tistically indistinguishable therefrom. A similar close correlation was
found in multiple-agent experiments (for example, compare Dunne,
Jahn, & Nelson, 1983, Series 15a, 15b).

Shielding of Agent from Percipient: Potential Cheating by Subjects

Insinuations of cheating, however veiled or qualified, are the ul-
timate resort of hostile critics whose technical positions are indefen-
sible. For members of this scholarly field to invoke such innuendo
against their colleagues is repugnant and destructive; in this partic-
ular case, it is also quite illogical, for several reasons.

Throughout its 15-year history, our laboratory has concentrated
on the quality of its equipment, experimental design and controls,
analytical methods, theoretical models, interdisciplinary research
staff, and commitment to basic understanding of the phenomena it
studies. Sheer magnitude of effects has never been its principal in-
terest or the focus of its reports. Indeed, most of our published re-
sults have tended to be more conservative than those from other
laboratories; only in the overall size of the databases and variety of
experiments have we claimed any precedence.
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In the remote perception area in particular, our clearly stated
purpose from the outset has been the development of incisive ana-
lytical techniques for the quantitative assessment of the data, rather
than repetitious demonstration of an anomalous effect that we re-
gard as already well established by many other laboratories. These
techniques have been uniformly applied to all subsets of our own
data, including several that have yielded no anomalous effect at all.
All of the participants in our experiments are fully aware of, and
interested in, this primary analytical purpose, and none is ever per-
sonally identified, financially compensated, or offered any other in-
centive for achievement. In this context, any carelessness of shield-
ing or temptation to cheat is evidently profitless and self-defeating.
Nonetheless, we have invariably followed well-defined protocols that
could ensure reliable data, without excessive encumbrance or suf-
focation of the participants (Dunne, Jahn, & Nelson, 1983).

The disproportionately large component of data involving one
particular long-term participant (010) is totally consistent with this
overarching commitment to fuller understanding of the phenom-
ena. Although HUM are quick to point out the reduction in overall
z score when this participant’s data are excluded, they either do not
recognize or do not bother to acknowledge that this is totally attrib-
utable to the corresponding reduction in total database size: in fact,
as shown in the Appendix, the average effect size actually increases
slightly with these data removed. Thus, this participant’s imputed
“deception” or “cheating” could have succeeded only in reducing
the scale of the anomalous effect.

Statistical Issues
Stacking

One of the prestated secondary purposes of our program is the
assessment of correlations among responses of multiple percipients
and their effects on overall performance. Such trials are a minority
of the database, and in all cases the various percipients were sepa-
rated from each other by long distances, and often by temporal in-
tervals, rendering any stacking influences highly unlikely, or anom-
alous in their own right. The multiple-percipient trials are invariably
analyzed both as separate groups as well as included in the grand
concatenations. Their removal has negligible impact on the overall
results.
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Dependence Due to Target Selection Method

The first HUM concern here is the effect of no replacement of
used targets on the statistical independence of the subsequent trials.
Again, although this issue is superficially reasonable, it is rigorously
demonstrated in the Appendix and confirmed in an independent
analysis by Vassy (personal communication, Feb. 21, 1986) to be
completely impotent within the PEAR scoring procedures. Normal-
ization to an empirical background proves to be absolutely invulner-
able to any statistical vagaries whatsoever that are internal to the
sequence of targets or to the perceptions. Even without this assur-
ance, it is well known that random selection without replacement
from progressively larger pools has asymptotically zero noninde-
pendence and, in principle, the target pools of the PEAR data are
indefinitely large, because their selection process is totally uncon-
strained and the descriptors employed for their representation are
by design sufficiently generic to be applicable anywhere.

HUM next worry about trial-by-trial feedback. Actually, most ex-
periments (44 of 49 series) were done in series of several trials with
no feedback untl all trials were finished. Nevertheless, to examine
this issue explicitly, we have performed relevant analytical and
Monte Carlo tests, also detailed in the Appendix, that show that
even the most aggressive strategy using trial-by-trial feedback,
namely, inversion of the target descriptors as guesses for the sub-
sequent perception, could substantially enhance scores only in very
small series. Applying this technique to our actual data, we find only
a portion of one series where a noticeable effect can thereby be ob-
tained, and even there the net contribution is far too small to reduce
the scores to nonsignificance if corrected. It should be noted that
the series in question was part of the early ex post facto encoded
subset which provided the basis for subsequent improvements and
enhancements of the PEAR procedures. When the much larger ab
initio encoded database is divided into those portions with and with-
out trial-by-trial feedback, it is found that the subset with feedback
has a smaller effect size than the set without feedback. We thus con-
clude that for our full PRP database, nonindependence and trial-by-
trial feedback are nonproblems.

Target Pool Definition

Again, as shown in the Appendix and in Dunne, Dobyns, and
Intner (1989), the possibility that “subjects might have some idea
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about the range of targets in [a] particular pool” is completely dis-
armed by the use of local mismatched distributions.

PEAR’s Position

HUM allude to a previous manuscript wherein one author (H)
communicated some of these similar concerns. They fail to acknowl-
edge, however, a large number of subsequent private responses
wherein these issues were thoroughly discussed. Throughout all of
this, it has been HUM'’s repeated assertion that some unspecified
bias within the specific percipient-agent subsets could invalidate the
basic premise of subgroup analysis. To the contrary, as shown in the
Appendix, even for arbitrarily variable biases within subsets, the
main diagonal remains unbiased relative to the mismatch distribu-
tion. Only if there are strong correlations in these biases could such
an artifact arise, and since all reasonable sources of such correlations
have already been shown to be negligible in the original analysis
(Dunne, Dobyns, & Intner, 1989), the bias proposed by HUM can-
not intrude. Possible shared descriptor bias associated with cueing
on the weather, ime of day, season, localization of target, and so
forth was chosen as the focus of a HUM presentation at the 1991
Parapsychological Convention. As noted in personal communication
with the authors (Jahn et al., letter to J. Utts, Oct. 14, 1991), this
point can be directly dispelled by examining the composition of our
database, for example:

1. All trials were in daylight hours.

2. Seasons were uniform across all subsets.

3. Most targets were hundreds or thousands of miles away from
the agent’s location.

4. Most trials were performed precognitively; in many cases per-
ceptions were completed several hours or even days before the
targets were even selected.

In other words, to activate the suggested mechanism for preferen-
tial cueing of descriptors, the percipient would have needed to fore-
cast the weather for a very distant location that had only been
broadly identified, and then transcribe this knowledge into the likely
agent descriptor responses for an outdoor or indoor target that had
not yet been selected. If the target selection was instructed from a
prepared pool, such a process would have had to be even more con-
voluted. Conversely, if we select from our data only those trials that
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could conceivably benefit from this strategy, we find that the effect
size is no larger than for the major groups that could not possibly
have been influenced.

Discussion and Conclusions

These sections of HUM are repetitions of previously stated,
largely erroneous criticisms leading to correspondingly illegitimate
generic conclusions. Curiously, in attacking this largest extant re-
mote perception database of 125 instructed and 211 volitional trials
as “too small” for adequate comparison, the authors suggest as a
model for “appropriate analysis” an experimental series of 10 trials
that is demonstrably irregular in all relevant analytical characteris-
tics (Schlitz & Gruber, 1981), although they themselves have no ex-
perimental data or experience to contribute. On these grounds, they
propose to discard the empirical finding that our very large, statis-
tically viable group of instructed trials actually scores somewhat
higher on average than the even larger group of volitional trials,
thereby obviating, de facto, several of their major concerns.

The alternative experimental designs HUM suggest are not spec-
ified, let alone justified, and since the “defects” they purport to ad-
dress are in the HUM interpretations, it is difficult to pursue their
generic proposition. In our view, the “correct experimental design”
they seem to be advocating is, in fact, pragmatically regressive. As
we have detailed elsewhere (Jahn, 1983, 1988, 1991; Jahn & Dunne,
1987), it is our belief that in any research involving subtle psycho-
logical factors, imposition of unnecessarily rigid constraints that im-
ply mistrust of the participants and inhibit their spontaneity may
suppress, if not totally suffocate, the phenomena of interest. While
effective precautions and controls are clearly essential in any valid
protocols, they should not become so draconian that they poison the
experimental ambience, or encumber the data acquisition and analy-
sis to the point that the requisite large databases cannot reasonably
be accumulated. With our more sophisticated designs and analytic
strategies, it is possible to retain user-friendly protocols that allow
some freedom of style, spontaneity, and enjoyment for the partici-
pants, while still deploying effective statistical checks to assess and
compensate for any departures from “ideal” specifications that this
flexibility entails.

Obviously, our results raise difficult epistemological questions,
and less anomalous explanations should indeed be sought as vigor-
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ously as those that appear to extend beyond known mechanisms.
But the ultimate understanding of such phenomena will not benefit
from ill-formed criticisms of necessarily imperfect basic research. It
will only follow from many more good experiments and increasingly
more incisive models.

The HUM Appendix

The HUM Appendix is largely a potpourri of earlier erroneous
challenges, salted with demonstrably inferior alternatives. For ex-
ample, at one point HUM propose an “optimal guessing strategy”
that produces off-diagonal scores that are identical to the diagonal
scores. In their discussion of statistical problems, the authors lump
selection without replacement together with the question of whether
diagonal scores should be included in the comparison matrix of off-
diagonal scores. They fail to give further detail on the selection is-
sue, but do perform a remarkably inapt assessment of the diagonal
inclusion question. For an illustrative case they choose the experi-
ment of 10 trials mentioned above, constituting a 10-by-10 matrix
that not only yields an abysmally nonnormal distribution, but is far
too small for their purpose (Schlitz & Gruber, 1981). Nonetheless,
they then proceed via the assumption that a p value of 4.7 X 1077,
derived by counting permutations, is valid (B. Markwick, private
correspondence, Feb. 14 and June 5, 1990). In our Appendix, this
permutation approach is shown to be generally incorrect for data of
this type, rendering all of their subsequent arguments and recom-
mendations invalid. Furthermore, as we have repeatedly demon-
strated to HUM and again show in the Appendix, their diagonal
inclusion question becomes trivial or moot in databases of the size
of ours.

Beyond all this, the philosophical issue of appropriately defining
any relevant “chance” distribution is ignored. In contrast, we have
clearly defined our procedure as a comparison of experimental
scores against a control condition established by an array of pseudo-
scores derived from mismatched perceptions and targets, all based
on the same set of 30 binary descriptors. As also shown in our Ap-
pendix, the resulting scores are slightly more conservative than, but
closer to, the exact analytical norm than scores using the procedure
recommended by HUM. We have examined these distributions for
statistically required characteristics, compared the results with other
appropriate procedures, and consulted extensively with experienced
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senior statisticians at Princeton and elsewhere, and with several
members of the critical community, none of whom has found fault
with this strategy.

Concluding Comment

Critical assessment and dialogue are an indisputably essential
component of good science. But to fulfill its proper purpose, such
criticism must be informed, objective, and astute. When, for what-
ever reason, it lapses into slovenliness in substance, ad hominem at-
tack, or ulterior motivation, it becomes a burden rather than a but-
tress to the scientific method. Parapsychology, for both
epistemological and ontological reasons, has long labored under an
excessive burden of illegitimate criticism that has seriously impeded
its own scholarly progress. Much of this has obviously been directed
from outside, hostile communities; but, in our opinion, an excessive
traffic of this sort has also prevailed within the parapsychological
family itself. This internecine carping has posed major distraction to
the research it purports to abet, has provided fodder for opponents
of the field to munch at their pleasure, and has discouraged uncom-
mitted potential allies and supporters from associating with this field
or with its investigators. It is our profound hope that this scholarly
community will soon find better means to discipline its own critical
commentary to the same high standards to which it aspires in its
creative research.

APPENDIX

Diagonal Issues

In their own Appendix, HUM raise the issue of inclusion versus
exclusion of the diagonal in constructing the background empirical
“chance” distribution against which experimental trials are evaluated.
The case they offer as a counterexample, originally posed in private
communications from Markwick (Feb. 14 and June 5, 1990) is a 10
% 10 matrix of experimental scores (Schlitz and Gruber, 1981). Cal-
culating a score for this matrix by the PEAR method produces an
extremely low probability, and it is the contention of HUM that the
true p value of this matrix is demonstrably much larger. In particular,
they contend that including the diagonal values in the empirical
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“chance” calculation would produce a p value much closer to the
larger, “correct” value.

However, the premise of HUM that the “correct” p value of a
scoring matrix is that value established by counting permutations is
itself incorrect. It is true that a 10 X 10 matrix has 10! = 3.63 x 10°
permutations, so that even if the matrix as given presents the best
possible permutation, that is, if no other ordering of the columns with
regard to the rows gives a larger total score on the main diagonal,
permutatlon counting cannot return a p value smaller than 2.76 x

7 for the probability that this ordering of the scores appeared by
chance. But this reasoning corresponds to a specific, inappropriate
statistical model, namely, that for a given set of targets, the percipient
somehow shuffles a preexisting set of perceptions in an attempt to
find the best possible ordering for correspondence to the targets. In
point of fact, in any encoded free-response protocol, the percipient
is not choosing an ordering from some small number of available
responses, but rather creates each response from an immense space
of potential responses, for example, over 10° possible ways of filling
out a perception checksheet in the PEAR protocol. The HUM scheme
of permutation counting is nothing more than a ranking analysis that
asks, “Does each perception match its proper target more closely than
all other possible targets? Failing that, how badly does the relative
ranking of targets to perceptions fall short of this ideal case?” With
an analytical measure of the degree of match between any two re-
sponses, such as the PEAR protocol provides, one may legitimately
ask a much more sensitive question, “How closely do the perceptions
correspond to their proper targets?” a criterion invisible to simple
permutation counting, and embodying far more information.

Consider some counterexamples to the premise that permutation
counting gives the correct probability value for a general scoring ma-
trix. First, let us imagine a procedure that, under the null hypothesis,
produces independent random values at each position in a scoring
matrix. Let us further envision that these values are normally dis-
tributed. Any given total score along the main diagonal can then be
compared to an appropriate normal distribution to establish a com-
pletely unambiguous probability for its occurrence. As a specific ex-
ample, consider the matrix:
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47 29 35 27 33 19 33 34 32 10
30 27 28 20 41 30 16 32 29 50
31 36 53 35 38 36 31 26 39 43
23 21 44 49 41 32 36 29 39 34
28 31 31 27 40 30 23 26 23 22
25 34 37 38 24 31 26 29 24 20
31 27 28 25 37 34 46 35 24 36
22 37 24 25 30 32 30 48 38 22
27 28 29 35 28 17 40 42 45 33
19 26 21 18 25 33 40 32 30 40

Here the 90 off-diagonal elements are constructed to fit as closely as
practical a normal distribution with mean 30 and variance 50 that is
arbitrarily taken as the “chance” distribution of this hypothetical set.
These 90 integers are then randomly assigned to off-diagonal locations
in the matrix. (Examining the statistics of the off-diagonal elements
will show them, in fact, to be much better behaved in their statistical
moments than would be expected for a genuinely random draw from
the above distribution.) The diagonal elements are randomly drawn
from the same distribution, but with a uniform mean shift added to
produce a total deviation of + 126 above the expected value, corre-
sponding to a z score of 5.634 and thusa p = 9.1 X 10~ °. This is the
“real” p of the dataset under the null hypothesis. An experimenter
presented with these data, knowing the expected characteristics, but
not knowing the actual underlying distribution other than having the
off-diagonal elements as a sample for it, would in this instance get almost
exactly the correct value by applying the PEAR procedure.

Now consider permutation counting. The total score of the main
diagonal is 426, and there are at least 4 permutations that produce
higher values. (Interchange columns 2 and 5; interchange 2 and 6;
interchange 2 and 10; interchange 2, 6, 10 — 10, 2, 6.) Therefore the
p value by permutation counting cannot be higher than 5 X 2.76 x
1077 = 1.38 x 107°, since the given permutation is, at most, among
the best 5 possible. This p value is demonstrably incorrect by over two
orders of magnitude.

This is not an artifact of the particular matrix chosen. As long as
the mean shift of the diagonal elements is not too large compared to
either their own standard deviation or that of the off-diagonals, as is
‘generally the case in remote perception data, the odds are quite good
that one can find permutations that bring in large off-diagonal elements
in place of small diagonal elements. The assumption of independent
elements, used to simplify the statistical model for this example, is in
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fact not essential, as has been shown in a more detailed analysis (Dobyns,
1992).

It is not always the case that counting permutations yields an in-
correctly conservative estimate, as occurs above. Consider a 10 X 10
matrix whose off-diagonal elements are, with equal frequency, 20 and
80, and whose diagonal elements are all 81. Since all off-diagonal ele-
ments are lower than all diagonal elements, it is already in the best
possible permutation, and permutation counting thus returns a p value
of 2.76 x 10 ". However, by the PEAR scoring algorithm, the main
diagonal has a net z of 3.268, yielding a far more conservative p of 5.42
x 107*

The overarching point of these examples is simply that the per-
mutation-counting method, regarded by HUM as returning the “cor-
rect” p values for scoring matrices, rests on an inappropriate statistical
hypothesis that does not correspond to the way scores are generated,
and ignores much of the information in the experimental data.

HUM next insist that diagonal scores must be included in the cal-
culation of the chance background, since this more conservative test
does, at least with regard to certain datasets published in the para-
psychological literature, produce a p value closer to that erroneously
obtained from permutation counting. But such diagonal inclusion is
categorically unjustifiable on experimental grounds. The experimental
condition superimposes some unknown degree (possibly zero) of anom-
alous information transfer on a background of fluctuations driven by
the degree of correspondence between an arbitrary target scene and
an arbitrary imagined scene. The proper control condition is a distri-
bution of target scenes compared to imagined scenes where no such
information transfer could have occurred. To construct a chance dis-
tribution from a mixture of trial and mismatch scores is to compare
experimental data with a mixture of experimental and control data,
rather than the more incisive test of comparing experimental data
against a control. As such, it is guaranteed artificially to deflate the
impact of any real effect that may be present. Further analysis and
calculations of diagonal-included versus diagonal-excluded scoring are
presented later in our calculations section.

In sum, the arguments in favor of diagonal-included scoring are
specious and are founded on a logical fallacy. Contrary to the opinions
of HUM, permutation-counting analysis is a potentially misleading pro-
cedure whose injudicious application may have deleterious etfects
largely unrecognized in the parapsychological literature. Indeed, all
forms of ranking analysis, when compared to analytical scoring tech-
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niques, suffer from the same inferiority as permutation counting in
surrendering information about the degree of similarity in transcripts.

Variable Biases

The issue of bias effects in internally uniform subsets was thor-
oughly discussed in Appendix C-II of Dunne et al. (1989). To recap
briefly, an internally uniform subset was defined as a group of trials
in which agent and percipient preferences (biases) were constant. It
was noted that any such bias will equally affect the trial scores (main
diagonal of scoring matrix) and the mismatch comparison scores (also
called “off-diagonal” or “empirical chance” scores). As discussed ear-
lier in the same reference, combining subsets with different biases can
produce a spurious effect, but such effects can be completely pre-
cluded by restricting score calculations to uniform subsets and using
standard composition rules to combine the z scores for subsets into
an aggregate z score for the entire matrix.

HUM have objected to this on two related grounds, namely, that
trials are not statistically independent and that biases may differ within
an apparently uniform subset. They claim that statistical noninde-
pendence of the trials may arise from choice without replacement in
the instructed target pools or from the free choice of location by the
agent in the volitional trials. Either of these arguments essentially
amounts to contesting the existence of internally uniform subsets.
(Note that nonindependence is equivalent to a variable bias because
the effective response probability on a given trial will be a function of
the innate probability and the correlations with trials already per-
formed.) To address these issues, the following analysis will dispense
with the assumption of uniformity and work in a completely general
framework of trial-by-trial response probabilities.

We shall first address the PEAR Method B, since that was the
primary technique used in the published report. This procedure uses
an empirical agent-response frequency, a, for each descriptor. Each
descriptor that matches between agent and percipient reports is
awarded a score of 1/a if the response is positive and 1/(1 — a) if
negative. The total score on the 30 descriptors is normalized by the
score that would have been attained had all the descriptors matched.
For simplicity, consider only a single descriptor, assuming the others
to be unbiased, an assumption that produces no loss of generality, as
will be shown later. In accordance with the procedure derived in
Dunne et al. (1989), regard a as the actual response frequency to that
descriptor in the data subset under consideration, rather than a global
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parameter. Consider a subset comprising N trials, with A, being the
probability that the agent responds positively to the descriptor under
consideration in the ith trial, and P, being the corresponding prob-
ability of a positive response from the percipient. Although this rep-
resentation can be used for an actual dataset by requiring all A; and
P;tobe 0 or 1, the intent of this analysis is to consider prior expectation
values for an experimental sequence not yet performed. Nevertheless,
it applies with equal force to real data, provided one remembers that
the quantity here treated as an expectation value will for real data be
a definite value, not necessarily equal to the expectation, but always
an unbiased estimator of it. The notation < x > will be used to denote
the expectation value of x.

By definition, < A, > = (1/N) 2 A, = a. We may define a; = 4,
— a as the local deviations of the agent’s expected behavior, for a
specific trial, from the global mean; %a, = 0 necessarily. We may
likewise define p, = < P, > and p, = P, — p,, such that Zp, = 0. Let
E;; be the expected score of target i against perception j, given values
for a, and p;. This has the form

g 2N, "

7 58 + D,

where the constants come from the other, presumed unbiased de-
scriptors. The numerator and denominator contributions are

N, = AP, + —— (1 - A)1 - P)
o ] -«
1 1
= ;(0‘ + ai)(Po + P,) + 1 - 01(1 —a - a)l — po — P;) (2)
a l — a
and
1 1
D,,=;A,.+ _a(l—A,-) 3)

2 + a;

——

l_ 1
a l — a
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Thus,

30+a,-(‘b°;:‘bf+'b°+'bf_l)

l -«
E,, = 4)

60+a,-(l— ! )
a l —a

1f A, and P; are probabilities, £,; is an expectation value; if they represent
actual data, E,; is an actual score. Again, we are concerned with the
expectation value for general data. No assumptions have been made
concerning the values of a4, and p, aside from the defining constraints
that they sum to 0 over the full range of the index. They are therefore
a completely general representation of any possible variation in re-
sponse probabilities from trial to trial. Any kind of correlation or guess-
ing strategy can be represented by assigning appropriate values to A,
and P; or, correspondingly, a; and p,.

We are ultimately concerned with the expected difference between
the mean value of trials on the main scoring diagonal versus the mean
value of off-diagonal trials. Note that the denominator of E; in Formula
4 above does not depend on j. Therefore, we may directly compute T,
the expected score of the :th trial, and O,, the expected mean value of
the ith row of off-diagonal scores:

1,1t 2 i
30+a"bo(a+l—a)+a'(a+l—a)
T,=E, = (3)

60+a,(l— ! )
a l -«

and
0, = ! i E, = ! i(l d,)E
‘7N - 1,-T+« 7 N-13 v
1 1 N
60 + a,|— —
l — «

(30+ai(l’°:p’+l’°+l’f_l) .

l -«
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In the numerator of O, for any term ¢ that does not depend on j,
1
A 21 — 8t = t. The only terms that do depend on j are pro-
0. Applying this to Formula 6 we obtain

portional to p,, and N

1 ) _a’ (p,/(N - pN-D+ 1)

l -« o l -«
60+a,-(l— : )
o ] -«

Much of this expression is identical to Formula 5 for T,, so that the row-
wise difference may, after some algebra, be rendered by the relation

1
30 + a,.po(& +

0; =

(7)

N ap,
T, -0, = — .
) "N = 160 — o) + a(l - 20)

(8)

The ultimate quantity of interest, of course, is the expected differ-
ence between p,, the mean of the scores on the diagonal, and p,, the
mean of the off-diagonal scores. Note that 7, and O, are already ex-
pectation values:

37, 30, 1 B
<pp = Mo > = - T —N2<T, 0,). (9)

Thus, this expected difference can be obtained by summing Formula
8 over all values of i. In the specific case that « = 0.5, < p, — p, >
« 2, a, p.. Since a; and p, both have expectation 0 by definition, this
quantity can be nonzero only if there is a nonzero correlation between
the a’s and the p’s. Any actual dataset will, due to random variations,
display some actual correlation, positive or negative; however, this is
simply one of the contributions to the inevitable variation about the
central tendency that will be displayed by any statistical measure. The
important point is that, unless there is some correlated influence that
gives 2, a,p, a nonzero expectation, the difference between on-diagonal
and off-diagonal means has zero expectation. Moreover, the requisite
correlation is between the set of g, and the set of p,; the internal cor-
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relations that may appear within each set, owing to nonrandom target
selection or psychological factors of the participants, are completely
irrelevant.

For more general values of a, we may simplify the denominator of
Formula 8 by factoring out (1 — 2a) so that

1 N ap;
(N - 1)(1 - 2(1),‘:11( + a,-’

<Hp T Ko = (10)

2
a - a
where K = 60l %0’ Although this is somewhat more complicated to
- 2a

evaluate, Monte Carlo calculations for randomly varying ¢ and p indicate
that it has expectation zero. This zero expectation results even when
the a; and p; generation algorithms for the Monte Carlo analysis are
designed to build high degrees of internal correlation into each group.
The character of Formula 10 can be observed analytically by multiplying
the entire expression by IT_ (K + a)), resulting in

N N
<un—uo>«21a.p,-[11<+a,. (11)

j#i

The expansion of I1,,,K + a, is a polynomial in powers of K and the
various a;.

[IK +a =K' + K" 0, + K¥* 3 ag, + ...

j#i J#i jHik#ig

7

= K¥' + K¥"%(—a) + K”*(Zaw,- + a;-)) e (12)

H

j

We can see from the example of the leading terms that every term
in the expansion must ultimately resolve to either (a) a constant, in-
dependent of 7, or (b) a term proportional to a*for 1 = x <N - 1
This entire polynomial then multiplies the factor ¢;p;, and the resulting
family of polynomials is summed for each i. Therefore it follows that
the entire summation takes on the form

<up = B>xC D ap + G ap + Cs Daip + ... (13)
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where the C’s are coefficients involving powers of K and sums such as
2.4 for various powers x. Although explicitly calculating these coef-
ficents for the general case would be very tedious, the important point
is the dependence of the summations. The first, as we have seen above,
corresponds to a correlation between a and p. The second similarly
corresponds to a correlation between a® and P, and so forth for the
later terms. Now, if there is no reason to expect a correlation between
p and a, there is even less reason to expect correlations between p and
higher moments of a. Therefore, in the absence of real information transfer,
anomalous or otherwise, between the agent and the percipient, that causes a
correlation in their respective response biases, all of these summations have
expectation 0 which is a sufficient, though not necessary, condition for
<pp— o> =0

Thus, if all other descriptors are unbiased, and if the biases intro-
duced on a given descriptor by agents and percipients are not correlated
with each other, the expected bias to the given descriptor is zero in
Method B scoring with local a’s. It then follows, as one can see by
imagining adding biases to one descriptor at a time until the full set
has been dealt with, that all the descriptors are unbiased, in the sense
of having no expected difference between trial scores and mismatch
scores. The point to emphasize is that this result is not affected by any
internal correlations or dependencies within the agent or percipient
response frequencies, but only on correlations between the two. Dunne
et al. already make a thorough examination of possible sources of
correlations in the bias, such as variations of personal preferences or
knowledge of the season in which the trial occurred. These are rein-
forced and extended by extensive ANOVA calculations described in the
calculations section of this Appendix. Issues of statistical noninde-
pendence of targets, or selection of targets without replacement, or
even of nonrandom choice of targets, are thus seen to be irrelevant
because they can only introduce structure to the sequence of q; describ-
ing the targets. The important issue, then, is correlation between agent
and percipient responses, to which concerns of target nonindependence
are an irrelevant red herring.

To this point, the discussion has centered on Method B, which has
some drawbacks from an analytical standpoint, as seen in the preceding
complicated derivations. Moreover, conclusions ultimately involve a gen-
eralization from one to many descriptors which, given the complexity
of the calculations, may seem obscure. In Method A, on the other hand,
trial scores are simple sums of descriptor scores, and the scoring cal-
culations themselves are far simpler. Because it was found that Method
A produces results statistically similar to Method B, an analysis of
Method A in the same terms seems worthwhile.
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Using the same notation, we find that the expected value of scoring
matrix element i, j for one descriptor is

E,=AP + (1 —A)l —P)

(@ +a)p, +p)+ (0 —a—a)l —p,—p)

=ap, + (1 —a)l = p,) +a(2p, — 1) + pQa — 1) +
2ap,.

(14)

We are ignoring here the normalization 1/30 applied in the actual score
since, unlike the Method B denominator, it is a constant multiplier to
the entire matrix. For brevity, let us define C = ap, + (I — a)(1 —
po), which we recognize as the constant expected contribution from the
average response frequencies. The expected mean of the diagonal
scores is

N

N
2E,,-=C+22a,-,- (15)
=1 N

=1

Zl—

<Pp > =

since 2a;, = %p, = 0 causing the linear terms to drop out of the sum.
The expected off-diagonal mean is

1 .
< Mo > = ]V(Z—_[v %(1 - Slj)b'l

1 .
- (}/;E, — 2{1;,,) . (16)

Now consider the double sum E,-] E, in more detail:

DE, = ZEC +a(2po — 1) + pi2a — 1) + 2ap,

i=h=1

N

> NC + Na(2p, — 1), since 2p, = 0 (17)
i=1 j

=N?*C, since Ea,- = Q.
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Therefore,

1
N2 — N (;Eq - ZEH)

<po > =
1 2
= Ve - N <) (18)
N oo L

N -1 N -1

Thus, the expected difference between the two means is
SHp —Ho> = < Pp > = < P>

N
< > — C >
Ko N - 1 +N—1 Wp (19)

(hp ~ C) =

N 2

N -1 N1

It then follows, somewhat more simply than for Method B, that the
expected bias on each descriptor is 0 provided the agent and percipient
response frequencies on that descriptor are mutually uncorrelated.
Unlike Method B, the generalization to the full set of 30 descriptors is
the simple sum of the bias computation for each descriptor, and is
therefore zero when the condition of agent-percipient noncorrelation
is maintained.

The previous material covers the discussion of “internally uniform”
subsets in Dunne et al. as a special case. For an internally uniform
subset, all of the a, and p, are zero, which trivially leads to the result
that the bias formulae derived above are zero. Likewise, blocks of data
by different agents and/or percipients with different response biases
will bias the final score if and only if those local biases are correlated,
and any such effect can be averted by conducting one’s analysis within
subsets such that, for example, the same agent and same percipient are
involved with no communication prior to completion of the entire block,
so that no possibility of correlated variation occurred. Most of the
remote perception data were gathered under precisely such conditions.

These general results are of course much stronger than those de-
rived in Dunne et al., since the requirement of internally uniform
subsets is now replaced by the much weaker requirement of subsets
whose internal variation is uncorrelated between agent and percipient.
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Calculations

Analysis of variance. As noted in the text, analysis of variance can
be applied to examine possible effects of secondary parameters in the
PRP database, and thus it provides further perspective on some of
the questions raised by HUM. The entire formal database has been
subjected to a general linear model ANOVA with z scores as the
dependent variable and several secondary parameters or categorical
groupings as independent variables. The factors included volitional
versus random target selection, single versus multiple percipients, ab
initio versus ex post facto encoding, summer versus winter trials, trial-
by-trial feedback versus post-series feedback, data involving Partici-
pant 10 versus all others, and a three-level factor comparing targets
near Chicago, near Princeton, and elsewhere. The ANOVA main
effect was found to be significant, F (8,320) = 2.741, p = .0061, but
none of the seven secondary parameters was individually significant.
This means that the scores are indeed shifted from their normal
expectation, but that the effect is not greatly influenced by any of
these factors. Two of the interactions were marginally significant,
namely, target selection mode with single versus multiple percipients,
F (1,320) = 3.009, p = .084, and target encoding with geographic
location, F (1,320) = 3.666, p = .056. The assessment of interactions
is limited to those which are not confounded (e.g., we cannot compute
an interaction for geographic location with target selection because
all Chicago targets were randomly selected). However, the overall
effect of interactions is not significant, indicating that in general the
anomalous shift of z scores is not affected differentially by particular
combinations of secondary parameters.

We conclude that none of the secondary parameters are important,
with the possible exception that their interactions may provide some
useful insight. In particular, this analysis shows that the target selec-
tion procedure is not a significant factor; and contrary to the HUM
thesis that agent selection of targets may result in artifactual score
contributions, the small difference in the subgroup mean shifts favors
the randomly selected targets. Furthermore, and contrary to their
assertion that the PEAR sample sizes may be too small for such com-
parisons, the internal and pooled standard errors for the subgroup
means differ by less than two percent, as might be expected from
groups with well over 100 trials. Similarly, the ANOVA shows that
several of the other HUM speculations about possible spurious con-
tributions to scoring have no basis in fact. HUM suspect “stacking”
in the multiple percipient trials, but these have a smaller mean score



Response to Hansen, Utts, and Markwick 137

than the single percipient subset. Seasonal differences, one of the
claimed possible sources of bias, represented in the ANOVA as sum-
mer versus winter trials, do not approach significance. Addressing
their suggestion that Participant 10’s data ought to be excluded be-
cause they contribute unduly, this analysis yields an F ratio of 0.084
(p = .77) for the factor comparing these trials against those of all
other participants, showing HUM’s contention and their imputation
of cheating to be entirely specious.

Trial-by-trial feedback is also a nonsignificant factor, but its sugges-
tive interaction with the encoding factor raises a noteworthy point.
The interaction is driven by a small subset of 28 trials with trial-by-
trial feedback in the ex post facto category that displays higher scores
than the other combinations. This group is special in a number of
ways that may be instructive; and while we cannot precisely identify
the source of their uniqueness without more research, the following
features are probably relevant: They are all from the earliest part of
the database and include several of the most impressive trials by any
standard; they were done in a pure free-response mode without the
analytical check sheet methodology; they used tape recording of rich,
lengthy descriptions; and they were all produced by percipients new
to this kind of experience, who had no conditioned expectations. In
addition, as detailed in the Monte Carlo examination of trial-by-trial
feedback, these trials could in principle have been affected, though
not strongly, by such feedback as a source of spurious inflation. Fi-
nally, there is the possibility that the z scores for this ex post facto
subgroup may be larger because these data served as the model for
the analytical judging descriptor choices, and hence they may be more
responsive to these descriptors.

In summary, the ANOVA leads to the conclusion that none of the
parameters examined has an appreciable impact on the character of
the data, with the possible exception of trial-by-trial feedback, which
shall be examined more fully via a Monte Carlo analysis later in this
section. The conclusion in turn obviates HUM’s concerns about ran-
domness in target selection, stacking, sensory cueing, and overparti-
cipation by one individual; the next section focuses further on the
last of these issues.

One participant’s role. HUM criticize the extensive involvement of
Participant 10 as either agent or percipient. This individual’s total
involvement is 244 of the 336 formal trials—as agent or percipient
in all 59 of the ex post facto encoded trials and in 185 of the 277 ab
initio encoded trials. The effect sizes and z scores of these datasets
can be summarized thus:
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Dataset Effect size N trials Total z
No. 10, ex post facto 0.754 59 5.79
No. 10, ab initio 0.253 185 3.44
Others, ab initio 0.267 92 2.56

Two conclusions are readily apparent. First, using the comparable
ab initio protocols, trials involving Participant 10 have a slightly
smaller effect than trials not involving No. 10, although the differ-
ence is not statistically significant. The larger z score of the trials
with Operator 10 is purely due to the larger dataset size. The value
just quoted for the z score of the dataset exclusive of Participant 10
differs from the value 2.17 quoted in HUM. That value apparently
was based on a composite z score subtraction from the tables of in-
dividual agent and percipient effect sizes published in Dunne et al.,
and therefore differs from the value computed directly by scoring
within the appropriate submatrix. Second, when Participant 10’s
performance is compared across the two different protocols, the ef-
fect size is larger by a factor of 3 in the ex post facto data. These
data, with third-party encoding throughout, and almost entirely
drawn from an instructed target pool, are much closer to the pro-
tocol implicitly recommended by HUM as the standard of parapsy-
chology: randomly chosen targets, encoding by consensus of a third-
party panel, complete and unambiguously enforceable shielding be-
tween agent and percipient (in many of the trials both participants
were physically accompanied by observers for the entire interval
from trial initiation to final recording of transcripts; most of the ex-
ceptions involved participants on different continents), and so forth.
If Participant 10’s performance is to be attributed to chicanery, it
seems decidedly odd that it is spectacularly better under a protocol
that makes any form of deception vastly more difficult. The close
consistency of Participant 10’s performance in the ab initio protocol
with that of a large pool of volunteers suggests instead that this per-
son’s large statistical contribution arises entirely from a willingness
to generate large amounts of data.

Monte Carlo analyses. Earlier Monte Carlo runs did not address
the issue of mutual nonindependence of descriptors, either within
or between checksheets. (Here and in the following, “checksheet” is
used to mean one full set of descriptor responses produced by
either agent or percipient.) Although there are both empirical and
conceptual grounds for regarding this nonindependence as unim-
portant, it was nonetheless considered worthwhile to examine these
effects under conditions as close to actual experimental data reduc-
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tion as possible. The two classes of nonindependence at issue are
quite distinct. The interdependence of descriptors within a given
checksheet, arising from the tendency of real or imagined scenes to
contain related elements, is expected a priori to be inconsequential
in the analysis because its net effect is to reduce the amount of in-
formation in a checksheet. Although this would alter the distribu-
tion relative to some ideal chance value occurring in an uncorrelated
world, such effects should already be properly compensated, be-
cause the chance background used is empirically derived from rear-
rangement of the same responses. The nonindependence between
trials can arise from the fact that instructed targets are drawn with-
out replacement, or that agents never visit the same volitional target
twice and may tend to avoid closely similar scenes.

Regardless of the source of the nonindependence, the net statis-
tical effect is that a certain probability distribution of target check-
sheets exists, from which specific checksheets are drawn without re-
placement. The vagaries of human volition and personal response
bias are thus subsumed into the hypothetical distribution of check-
sheets. Such representation in terms of overall checksheet probabil-
ities is extremely powerful. Assigning a net probability to each of
the 2°° possible checksheet response configurations fully describes
the space of possible responses, subsuming in one stroke the de-
scriptor probabilities, two-descriptor correlations, N-descriptor cor-
relations, and so forth. The drawback to this approach is that com-
parison of some billion possible target sheets versus a like number
of possible responses is not feasible at the level of individual prob-
abilides. It is, in contrast, practical to estimate effects via Monte
Carlo analysis.

To reduce the space of possible checksheets to manageable size,
only 8 descriptors at a time were used in the first stage of the in-
vestigation, leaving only 256 entries for which probabilities needed
to be calculated. Response frequencies for each of the possible
checksheets could then be computed to reproduce with high accu-
racy the descriptor frequencies and two-descriptor correlations of
any arbitrary set of 8 descriptors in the actual target data.

The calculation of the 8-descriptor checksheet distribution re-
quires a set of 8 descriptor frequencies and the corresponding 8 X
8 correlation matrix. This was obtained for each Monte Carlo analy-
sis by selecting 8 descriptors from the actual target data and the
corresponding 8 X 8 submatrix of the full 30 X 30 correlation ma-
trix. For each set of target probabilities so generated, the following
calculation was run:
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1. Generate 10 targets by drawing from the set of 256 check-
sheets, without replacement, in accord with the probability assigned
each checksheet.

2. Generate 3 different sets of 10 “perceptions,” using three dif-
ferent algorithms: Biased guessing uses the actual frequencies and
correlations in the perception data of the same 8 descriptors se-
lected to establish the target checksheet probabilities; the same exact
checksheet probability calculation is performed. This procedure re-
produces whatever biases exist in the actual percipient guessing
strategy. Informed guessing uses the same checksheet probability list
as the target generation process, representing a percipient who is
trying to gain an advantage from knowledge of the agent’s prefer-
ences. Adaptive guessing addresses the question of trial-by-trial feed-
back by adjusting the response probabilities for each trial to avoid
the salient aspects revealed by earlier targets. The first response in
adaptive guessing uses the informed-guess probabilities. The second
response is the logical inversion of the first target. Thereafter, the
agent response frequencies are observed empirically for the first N
targets and are inverted to generate the probabilities for perception
N + 1. Scoring method A is then used to create three 10 X 10 score
matrices, each of which is scored in two ways: diagonal versus off-
diagonal (diagonal-excluded, the standard PEAR approach) and di-
agonal versus whole matrix (diagonal-included, the approach rec-
ommended by HUM.)

The final result of these calculations is six different composite z
scores for three different 10 X 10 scoring matrices. Since, by con-
struction, no anomaly is present (all three of the perceptions are
computed using guessing strategies, and even adaptive guessing
uses information that would be available to the percipient by non-
anomalous means under the conditions for which it is testing,
namely, trial-by-trial feedback within a series), the computed z sta-
tistic should display its null hypothesis distribution, with mean 0 and
variance 1. To estimate the actual distribution of the test statistic,
the above calculation was repeated 1,000 times. This gives an esti-
mate of the behavior of the z scores for the given set of descriptors.
Different descriptor subsets were then chosen for a total of 20 rep-
etitions of the 1,000-set run. The first three sets were, respectively,
descriptors 1-8, 9—16, and 17-24; the remaining 17 repetitions
were set up by randomly drawing 8 of the 30 descriptors to gener-
ate checksheet probabilities.

For biased guessing with the diagonal excluded, which is in some
sense the closest approximation to PEAR data scored with the PEAR
procedure, the mean z score is 0.00479 =+ 0.00728. (All + uncer-
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tainty values are 1 o limits computed from the variability across the
20 repetitions for different descriptor sets.) This is statistically in-
distinguishable from zero. The standard deviation is 0.956 + 0.011,
which is neither the ideal value 1 nor the increased value which
might be expected for independent matrices, but instead is slightly
depleted. This implies that the PEAR reporting procedure is slightly
conservative, in that we are computing probability ranges based on
a null hypothesis variance of 1 on a test statistic whose actual stan-
dard deviation under the null hypothesis is 0.956. Biased guessing
with the diagonal included produced a mean z of 0.00350 =
0.00651, again effectively zero, but with a standard deviation of only
0.8540 = 0.0098. Thus, had we adopted this method, the results
would have been even more overconservative than those from the
diagonal-excluded test.

The informed-guessing calculation also fails to produce a spu-
rious effect. The diagonal-excluded score develops a mean of
0.00513 = 0.00708, with a standard deviation 0.9582 =+ 0.0090.
The diagonal-included statistics yield a mean of 0.00562 + 0.00635
and a standard deviation of 0.8556 * 0.0079. Thus, it again ap-
pears that trying to guess in accordance with the preferences of the
agent is unhelpful in enhancing the score, which supports the ana-
lytical discussions of guessing strategies presented earlier.

The adaptive guessing strategy, in contrast, does produce a spu-
rious effect, which also confirms the analytical discussion of variable
guessing strategies. In that analysis it was demonstrated that a var-
iable guessing strategy produces a bias if, and only if, there is a cor-
relation between the variations in agent response frequencies and
percipient response frequencies. The combination of target selection
without replacement and trial-by-trial feedback allows the percipient
to change response frequencies in a way correlated to the agent,
though neither element alone permits this. In the diagonal-excluded
calculation a mean of 0.317 * 0.029 with standard deviation 0.757
+ 0.012 is found. In the diagonal-included scoring, the mean be-
comes 0.284 + 0.026, with standard deviation 0.682 = 0.011. These
results, which are mean z scores for 10-trial sets, correspond to an
effect size per trial of = 0.1, or about one-third to one-half of the
typical PRP effect size in various subsets. They therefore merit
closer examination.

First, note that in the diagonal-excluded case, if we take 1,000
samples from a population with standard deviation 0.757 we should
expect the resulting mean to have a standard error of 0.757/
VTI,000 = 0.024, which is also the expected standard deviation of
the mean from group to group if we take such samples repeatedly.
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Instead, the standard deviation of the 20 means is found to be
0.117, leading to the statistical uncertainty quoted above after a fur-
ther division by V20. This shows that the samples are taken from
different populations, in that the mean of one group of 1,000 can
be statsucally distinguished from the mean of another group. Ex-
amination of the statistics of individual groups bears out the fact
that the mean z score for adaptive guessing is strongly dependent
on the descriptor set in use; indeed, for one set (the descriptors 9—
16), it is actually slightly negative. Also note that there is danger in
extrapolating the size of the bias from 8 descriptors to 30, that most
of the PRP data were collected in well-defined series with trial-by-
trial feedback not available to the percipient, and that the depen-
dence of the effect on dataset size is not established by this first-
phase analysis, which uses 10 x 10 subsets exclusively.

To address these issues, a second phase of the Monte Carlo
analysis was conducted, wherein the full set of 30 descriptors was
used. Adherence to agent statistical behavior was achieved simply by
drawing, without replacement, from the pool of actual targets.
“Pseudo-perception” data were generated using the adaptive guess-
ing strategy throughout, where the relatively unimportant first trial
in a set, which contains no opportunity to respond to prior trials,
was generated using the agent o’s without regard to higher-order
correlations.

Calculations were performed for 3 x 3,5 x 5, 10 x 10, and
20 x 20 trial sets. It was judged unnecessary to calculate for larger
datasets for two reasons. First, adaptive guessing cannot be used ef-
fectively between two percipients because percipients are not given
feedback about other percipients’ trials. That portion of the data-
base in which trial-by-trial feedback was given must therefore be
broken down yet further into individual percipient datasets, where
the effect of large datasets on adaptive guessing is irrelevant. Sec-
ond, the Monte Carlo results with the dataset sizes above were
found to adhere with remarkable accuracy to a log-linear relation:

E = (0.858 = 0.013) — (0.219 = 0.006)In N, (1)

where E is the effect size per trial and N is the number of trials.
The uncertainties on the regression parameters are those emerging
from the regression calculation itself. Note that this is a decreasing
function; the larger the database, the less benefit is gained from
adaptive guessing. This can be explained in two related ways.

1. As the number of previously observed trials grows, the impact
of the latest trial on the observed agent response frequencies must
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lessen. Therefore the adaptive guessing algorithm converges toward
a uniform version as the «’s stabilize, and we have already seen that
uniform guessing algorithms are useless.

2. Regardless of the details of the guessing algorithm, adaptive
guessing gets its power from the nonrepetition of targets. Whether
trials are volitional or instructed, they may be regarded as being
choices from a large pool of “conceivable targets” spanning the
space of every possible observable scene. The main difference is that
the preparer of the instructed pool preselects a finite set of discrete
points in that space, which are then drawn uniformly rather than
with the possible biases of the agent. However, since the preparer
of an instructed pool is likely to choose a wide variety of potential
targets, the finite set will nevertheless do a fair job of spanning the
full range of the configuration space. Potential biases on the part of
the selector simply restrict the subspace spanned by the prepared
pool and therefore need not be considered further. The first trial
defines a point in this space of possible scenes, and no other trial is
likely to be very close to it in this metric; the instructed pool is nec-
essarily a very sparse sampling of the configuration space, whereas
the volitional agent is highly unlikely to choose another target ex-
tremely similar to a prior one. Thus, in either protocol, by confining
his choices to regions of “scene space” distant from the first target,
the percipient can slightly enhance his probability of a good match
on the second. However, once several targets have been seen, the
set of previous targets will also span the configuration space, so that
it is no longer possible to find a “preferred” region of higher prob-
ability on the basis of previous trials.

It might be suggested that, if the accumulation of prev1ous in-
formation hinders the guessing, then an even simpler guessing strat-
egy that only takes into account a few of the most recent trials
should do better. However, the point of item 2 is that, when only a
single point in the target space has been established, the probability
distribution for the next target is distorted by the tendency to avoid
this point; this is no longer the case when such points-to-avoid are
scattered randomly through the target space. In fact, such “forget-
ful” algorithms do not perform as well as the one that keeps track
of all previously revealed data.

The figures for adaptive guessing quoted throughout this analy-
sis are based on an algorithm that outperforms any other strategy
we have been able to define, and thus they present a worst case as-
sessment of the potential spurious effect. A very important point is
that these figures definitely overestimate the amount a given perci-
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pient could benefit from adaptive guessing because of the limited
information a percipient can gain. In the sequences of data poten-
tially subject to adaptive guessing, most percipients were involved
intermittently with several trials intervening between successive trials
by a given percipient. Thus, a given percipient might often have
several extraneous targets withdrawn from the pool between any
two of his own responses. Since the stabilization of target character-
istics progresses as the number of targets withdrawn increases, this
diminishes the size of the fluctuation that the percipient may try to
take advantage of. Furthermore, the targets viewed by other perci-
pients may skew the remaining pool in ways unanticipated by a
given percipient.

Given the dependence of adaptive-guessing effect size on subset
size, it is clear that the 69 trials potentially susceptible to adaptive
guessing cannot be treated en bloc; rather, they must be broken
down by percipients. That is, one must identify the number of trials
contributed by each percipient, compute the effect size potentially
due to adaptive guessing for a block of that size, and then average
the potential adaptive-guessing effect over the percipients. When
this is done it is found that the total potential adaptive-guessing con-
tribution to the final z score is AZ = 1.273.

Further insight may be gained by breaking down the data into
the ab initio (277 trials) and ex post facto (59 trials) as well as by
vulnerability to adaptive guessing. The actual effect size for the ob-
served anomalous yield shows interesting patterns:

Ab initio data for which adaptive guessing was possible: 41 trials,
effect size 0.224, Z = 1.433.

Ab initio data with no opportunity for adaptive guessing: 236
trials, effect size 0.234, Z = 3.600.

Ex post facto data with possible adaptive guessing: 28 trials, ef-
fect size 1.035, Z = 5.477.

Ex post facto with no opportunity for adaptive guessing: 31
trials, effect size 422, Z = 2.349.

In other words, in the ab initio data, the dataset most vulnerable
to the suspected bias shows a smaller anomalous effect than the re-
mainder. In the ex post facto data, if the 28 trials where adaptive
guessing was possible are broken down into percipient subsets and
the expected effect sizes are calculated, the resulting effect size po-
tentially due to adaptive guessing is 0.503, corresponding to Z =
2.66. This leaves an effect size of 0.532, corresponding to a Z of
2.82, unaccounted for. In other words: The worst-case potential for
adaptive guessing based on trial-by-trial feedback in the part of the
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ex post facto database where such feedback was given corresponds
to about half the effect size; this leaves, even in the vulnerable data-
set, an effect size comparable to that in the rest of the data, though
still somewhat stronger. This remaining anomaly, unexplainable by
trial-by-trial feedback, produces the z score of 2.82 mentioned above
for the 28 potentially susceptible trials alone. This feeds through to
a final z score of 3.64 (instead of 5.79) for the ex post facto data as
a whole and thus of 5.59, instead of 6.36, for the entire database.

It should be reemphasized that the above discussion is very
much a worst-case analysis. Extending it further by assuming that
adaptive guessing did occur using the most effective strategy in the
potentially vulnerable ab intio data as well, the overall z score would
only be reduced to 5.082 (p = 1.87 x 1077). But again, the ab initio
data refute such an assumption; if adaptive guessing is present, it is
evidently ineffective; in fact, it is worse than useless. Likewise, while
we have learned that adaptive guessing strategies could have some
spurious impact in the ex post facto data, the remote perception
database is nonetheless sufficiently robust to retain p = 10™% after
the largest possible correction for this.

REFERENCES

BisaHA, J. P., & DunnE, B. J. (1979). Multiple subject and long-distance
precognitive remote viewing of geographical locations. In C. T. Tart, H.
E. Puthoff, & R. Targ (Eds.), Mind at large (pp. 107—124). New York,
Praeger.

Box, G. E. P., HUNTER, W. G., & HUNTER, J. S. (1978). Statistics for experi-
menters, an introduction to design, data analysis, and model building. New York:
John Wiley & Sons.

DoByns, Y. H. (1992). The permutation counting fallacy. (Technical Note
PEAR 92001). Princeton, NJ: Princeton Engineering Anomalies Re-
search, School of Engineering and Applied Science, Princeton University.

DUNNE, B. J., & BisaHa, J. P. (1979). Precognitive remote viewing in the
Chicago area: A replication of the Stanford experiment. Journal of Para-
psychology, 43, 17-30.

DuNNE, B. J., DoByns, Y. H. & INTNER, S. M. (1989). Precognitive remote
perception. I1I: Complete binary data base with analytical refinements.
(Technical Note PEAR 89002). Princeton, NJ: Princeton Engineering
Anomalies Research, School of Engineering and Applied Science, Prince-
ton University.

DunNE, B. J., Jann, R. G., & NELson, R. D. (1983). Precognitive remote
perception. (Technical Note PEAR 83003). Princeton, NJ: Princeton En-
gineering Anomalies Research, School of Engineering and Applied Sci-
ence, Princeton University.



146 The Journal of Parapsychology

JaHN, R. G. (1983). On the representation of psychic research to the com-
munity of established sciences. (Technical Note PEAR 83004). Princeton,
NJ: Princeton Engineering Anomalies Research, School of Engineering
and Applied Science, Princeton University.

JanN, R. G. (1989). Anomalies: Analysis and aesthetics. Journal of Scientific
Exploration, 3 (1), 15-26.

Jann, R. G. (1991). Psi at the Savoy. Journal of Indian Psychology, 9, 14-23.

Jann, R. G., & DUNNE, B. ]. (1987). Margins of reality: The role of consciousness
in the physical world. San Diego: Harcourt Brace Jovanovich.

JaHN, R. G., DUNNE, B. ]., & JaHN, E. G. (1980). Analytical judging procedure
for remote perception experiments. Journal of Parapsychology, 44, 207~
231.

JaHn, R. G,, DUNNE, B. J., NELson, R. D, Jann, E. G, CurTis, T. A, &
Cook, 1. A. (1982). Analytical judging procedure for remote perception
experiments. II: Ternary coding and generalized descriptors. (Technical
Note PEAR 82002). Princeton, NJ: Princeton Engineering Anomalies
Research, School of Engineering and Applied Science, Princeton Uni-
versity.

ScHLITZ, M., & GRUBER, E. (1981). Transcontinental remote viewing: A re-
judging. Journal of Parapsychology, 45, 233-237.

SNEDECOR, G. W., & CocHRAN, W. G. (1980). Statistical methods, seventh edition.
Ames: Iowa State University Press.

WHALEN, A. D. (1971). Detection of signals in noise. New York: Academic Press.

Princeton Engineering Anomalies Research

C-131, School of Engineering and Applied Science
Princeton Unaversity

Princeton, NJ 08544-5263



	Response to Hansen
	Response to Hansen2.pdf

